A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic CCD for Cathode Current Departs. A conventional current describes the direction in which positive charges move. Electrons have a negative electrical charge, so the movement of electrons is opposite to that of the conventional current flow. Consequently, the mnemonic cathode current departs also means that electrons flow into the device's cathode from the external circuit.
Cathode polarity with respect to the anode can be positive or negative depending on how the device is being operated. Positively charged cations always move towards the cathode and negatively charged anions move towards the anode, although cathode polarity depends on the device type, and can even vary according to the operating mode. In a device which absorbs energy of charge (such as recharging a battery), the cathode is negative (electrons flow into the cathode, and charge flows out of it), and in a device which provides energy (such as battery in use), the cathode is positive (electrons flow into it and charge flows out): A battery or galvanic cell in use has a cathode that is the positive terminal since that is where the current flows out of the device. This outward current is carried internally by positive ions moving from the electrolyte to the positive cathode (chemical energy is responsible for this "uphill" motion). It is continued externally by electrons moving into the battery which constitutes positive current flowing outwards. For example, the Daniell galvanic cell's copper electrode is the positive terminal and the cathode. A battery that is recharging or an electrolytic cell performing electrolysis has its cathode as the negative terminal, from which current exits the device and returns to the external generator as charge enters the battery/ cell. For example, reversing the current direction in a Daniell galvanic cell converts it into an electrolytic cell where the copper electrode is the positive terminal and also the anode. In a diode, the cathode is the negative terminal at the pointed end of the arrow symbol, where current flows out of the device. Note: electrode naming for diodes is always based on the direction of the forward current (that of the arrow, in which the current flows "most easily"), even for types such as Zener diodes or solar cells where the current of interest is the reverse current. In vacuum tubes (including cathode ray tubes) it is the negative terminal where electrons enter the device from the external circuit and proceed into the tube's near-vacuum, constituting a positive current flowing out of the device.
In chemistry, a cathode is the electrode of an electrochemical cell at which reduction occurs; a useful mnemonic to remember this is AnOx RedCat (Oxidation at the Anode = Reduction at the Cathode). Another mnemonic is to note the cathode has a 'c', as does 'reduction'. Hence, reduction at the cathode. Perhaps most useful would be to remember cathode corresponds to cation (acceptor) and anode corresponds to anion (donor). The cathode can be negative like when the cell is electrolytic (where electrical energy provided to the cell is being used for decomposing chemical compounds); or positive as when the cell is galvanic (where chemical reactions are used for generating electrical energy). The cathode supplies electrons to the positively charged cations which flow to it from the electrolyte (even if the cell is galvanic, i.e., when the cathode is positive and therefore would be expected to repel the positively charged cations; this is due to electrode potential relative to the electrolyte solution being different for the anode and cathode metal/electrolyte systems in a galvanic cell).
In an electrolytic cell, the cathode is where the negative polarity is applied to drive the cell. Common results of reduction at the cathode are hydrogen gas or pure metal from metal ions. When discussing the relative reducing power of two redox agents, the couple for generating the more reducing species is said to be more "cathodic" with respect to the more easily reduced reagent.
Thermionic emission: The cathode can be heated. The increased thermal motion of the metal atoms "knocks" electrons out of the surface, an effect called thermionic emission. This technique is used in most vacuum tubes.
Secondary emission: An electron, atom or molecule colliding with the surface of the cathode with enough energy can knock electrons out of the surface. These electrons are called secondary electrons. This mechanism is used in gas-discharge lamps such as neon lamps.
A hot cathode is a cathode that is heated by a filament to produce electrons by thermionic emission. The filament is a thin wire of a refractory metal like tungsten heated red-hot by an electric current passing through it. Before the advent of transistors in the 1960s, virtually all electronic equipment used hot-cathode vacuum tubes. Today hot cathodes are used in vacuum tubes in radio transmitters and microwave ovens, to produce the electron beams in older cathode ray tube (CRT) type televisions and computer monitors, in x-ray generators, electron microscopes, and fluorescent tubes.
This is a cathode that is not heated by a filament. They may emit electrons by field electron emission, and in gas-filled tubes by secondary emission. Some examples are electrodes in neon lights, cold-cathode fluorescent lamps (CCFLs) used as backlights in laptops, thyratron tubes, and Crookes tubes. They do not necessarily operate at room temperature; in some devices the cathode is heated by the electron current flowing through it to a temperature at which thermionic emission occurs. For example, in some fluorescent tubes a momentary high voltage is applied to the electrodes to start the current through the tube; after starting the electrodes are heated enough by the current to keep emitting electrons to sustain the discharge.
Electrons which diffuse from the cathode into the P-doped layer, or anode, become what are termed "minority carriers" and tend to recombine there with the majority carriers, which are holes, on a timescale characteristic of the material which is the p-type minority carrier lifetime. Similarly, holes diffusing into the N-doped layer become minority carriers and tend to recombine with electrons. In equilibrium, with no applied bias, thermally assisted diffusion of electrons and holes in opposite directions across the depletion layer ensure a zero net current with electrons flowing from cathode to anode and recombining, and holes flowing from anode to cathode across the junction or depletion layer and recombining.